3D Printing News Unpeeled, Live with Joris Peels Friday 19th of August
3D Printer OEM Nexa3D Lays off Staff Amid Economic Downturn
Boeing & Northrop Grumman Join Biden’s AM Forward 3D Printing Initiative
Metals Market Data: Q4 & Annual 2021
Market for Bound Metal Additive Manufacturing 2022
The Market for Additive Manufactured Polymer Automotive Parts: Europe and North America Regions
DED and Large-Format Additive Manufacturing Markets: 2021-2030
3D Printed Metals: A Patent Landscape Analysis 2019
3d Printed Polymers: A Patent Landscape Analysis – 2016
3d-printed Metals: A Patent Landscape Analysis – 2016
Metal Parts Produced 2021: Additive Manufacturing Applications Market Analysis
Additive Manufacturing with Metal Powders 2020
Copper Additive Manufacturing 2020–Market Database and Outlook
Surface Finish Study by Fraunhofer IAPT
Additive Monitoring Study by Fraunhofer IAPT
Additive Fatigue Study by Fraunhofer IAPT
A curated collection of industry and product deep-dives.
Videos, podcasts, product reviews and free downloadable resources.
Powerful search with product databases and business directories.
Dig Deeper, Search Our Message Board 3dprintboard.com
Feature Your Job Posting Here
3D Printing News Unpeeled, Live with Joris Peels Friday 19th of August
3D Printer OEM Nexa3D Lays off Staff Amid Economic Downturn
Boeing & Northrop Grumman Join Biden’s AM Forward 3D Printing Initiative
3D Printing News Unpeeled, Live with Joris Peels Friday 19th of August
3D Printer OEM Nexa3D Lays off Staff Amid Economic Downturn
Boeing & Northrop Grumman Join Biden’s AM Forward 3D Printing Initiative
My kids love creating structures with Legos, Duplos, and boxes. Some days they build big houses with simple walls and others detailed spaceships with intricate features. Their block choice dictates the structure they build, or they pick the blocks based on the resolution they desire. Directed Energy Deposition (DED), a family of Additive Manufacturing (AM) processes, is quite similar in that a designer has a set of geometric “building blocks” she can combine to make a structure. The feature resolution is based on the size of the melt puddle and part volume on the size of the motion platform, but I am getting ahead of myself.
First, let us break down this AM process, as we do in TBGA Training, by asking (3) questions:
How is a Layer formed?
The layer is created with the energy coming together at a focused point to create a melt puddle which is propagated to form a bead.
Common motion platforms include robots and gantries; additional degrees of freedom are often added with turn or flip/tilt motion for the part fixture and substrate.
Thermal or kinetic energy is used to convert particles or filament (wire) into a solid layer.
Today we are contemplating Fusion (thermal) DED, where the material is melted. Any compatible heat source and material combination can be used including laser, electron beam, plasma, and arc. Other processes use friction, ultrasonic, or kinetic energy.
How is the Material applied?
Wire via a feeder or powder particles fed with a carrier gas.
Some process and material combinations require specialty incoming material chemistries, but many can use standard “off the shelf” weld wire and coarser cuts of powder, which can be less expensive.
In a nutshell, DED is all about propagating a molten pool of metal to form a series of beads that solidify to form geometries. The bead needs a surface to attach to, so the process begins with a substrate, or base, to start deposition. Deposition is often followed by a heat treatment, partial or full machining (or other surface smoothing step), and non-destructive evaluation. DED is also often combined with other welding or cladding processes to create a final part. Two common process set ups are shown in Figure 1. The part shown in the figure is a partially machined titanium demonstrator manufactured by GKN Aerospace using Laser Wire DED showing geometry “building blocks” of straight walls, curved walls, and multiple intersections. Another characteristic of DED processes is a wide range of possible part sizes ranging from a few cubic centimeters to many cubic meters.
Figure 1: Two deposition setups showing (top) cylindrical substrate with a secondary turning axis and (bottom) flat plate substrate. Gray denotes substrate, green deposition head, and blue deposited material. Part image source: GKN Aerospace.
Designing for DED can be broken down into the opportunistic aspects, called Design for AM (DfAM), and the restrictive aspects, called Modify for AM (MfAM), as described in a previous TBGA article. Tables 1-3 illustrate key design considerations before, during and after deposition and note whether they are DfAM or MfAM considerations. The supporting software is just as important as calibrated hardware in a successful DED build. Part slicing, deposition path planning, which is the sequence of deposited beads, and control of layer (bead) height are critical, and all have cross-cutting and inter-related impacts on design.
I recently checked in with several leading developers of DED processes to showcase the variety of designs being built. The first is my former GKN Aerospace team, who are developing titanium Laser Wire DED with Oak Ridge National Laboratory in Tennessee. They have explored process parameters to create different bead widths to build walls ranging from 3mm up to 20mm, as shown in Figure 2. Their system has a flip/tilt fixture for the substrate which adds 2 additional degrees of freedom to the robot mounted deposition head enabling the exploration of more complex overhangs and double-sided deposition, which is great for managing distortion; Figure 3 shows a part built with double sided deposition that will be subsequently machined 100%. The Oak Ridge National Laboratory team used the same process to produce the fin shaped part shown in Figure 4; the diamond shaped holes showcase a design feature tailored to process capability.
Figure 2: Two 3 bead wide walls built on the same Laser Wire DED system using different key process variables. Source: GKN Aerospace.
Figure 3: Titanium Laser Wire DED deposited part. Source: GKN Aerospace.
Figure 4: Partially machined fin shaped titanium Laser Wire DED deposited part showing design examples of process compatible holes. Source: Oak Ridge National Laboratory Manufacturing Demonstration Facility.
Moving out to Colorado, the aluminum article shown in Figure 5, was produced as a single component without parasitic support material using Big Metal Additive’s multi-axis hybrid DED and machining process. This seating module for a marine transport vehicle is 6 feet wide, 2 feet deep and almost 3 feet tall. The design originates from an inspiration of generative design, and the CAD model was created from convergent modeling methods. There are overhang angles greater than 45 degrees and several converging and diverging connecting geometries with this challenging structure.
Figure 5: Aluminum DED structure built by Big Metal Additive.
DED enables the use of multiple materials for tailored performance. For components, like the rocket nozzle shown in Figure 6, regions with concentrated heat loads can be fabricated out of higher temperature materials while other areas can be fabricated out of higher strength materials. Built by FormAlloy in California with a small melt puddle powder-fed DED process, the rocket nozzle with internal cooling channels was built first, followed by the addition of the flange and the clad on the outer diameter. This component demonstrates the ability to build, add features and/or repair, and clad with a single DED process.
Figure 6: Rocket nozzle built with powder-fed DED by FormAlloy.
These examples show just a few of the design possibilities enabled by DED but many more geometries are being created including:
DED is a tool that is finding its way into quite a few manufacturing toolboxes, though I doubt Wallace D. Wattles was considering DED when he said, “It is essential to have good tools, but it is also essential that the tools should be used in the right way.” Whether contemplating our next family build activity or the build plan for a large metal component, it is critical to select the right process for the job. Understanding the DfAM and MfAM characteristics of specific processes is a fantastic starting point for a DED design journey.
Stay up-to-date on all the latest news from the 3D printing industry and recieve information and offers from thrid party vendors.
3D Printing News Unpeeled, Live with Joris Peels Friday 19th of August
3D Printer OEM Nexa3D Lays off Staff Amid Economic Downturn
Seeking to recognize women making outstanding contributions to the manufacturing industry, the Women in Manufacturing Education Foundation (WiMEF) inducted 13 women leaders to its 2022 class of Women in Manufacturing...
This week, you can catch Markforged and Stratasys on the road, and ASTM continues its personnel certificate course. America Makes is celebrating its 10th anniversary and holding MMX, and Nexa3D...
As Women in 3D Printing continues its mission to increase diversity, equity, and inclusion (DEI) in the additive manufacturing (AM) industry and beyond, it may be difficult to know exactly...
Things are picking up a little in terms of 3D printing webinars and events this week! Fortify will be at the SmallSat Conference, ASTM is continuing its virtual certificate course,...
Upload your 3D Models and get them printed quickly and efficiently.
Networking & Intelligence Summit, February 7-9, 2023
3D Printing jobs around the world.
Subscribe to Our Email Newsletter
© 2016 - 2022 3DR HOLDINGS. ALL RIGHTS RESERVED.
Register to view and download proprietary industry data from SmarTech and 3DPrint.com Questions? Contact info@3dprint.com